Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
preprints.org; 2023.
Preprint en Inglés | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202306.1455.v1

RESUMEN

Nebulized thrombolysis offers locally targeted therapy with potentially lower bleeding risk than systemic administration for coronavirus disease 2019 (COVID-19) respiratory failure. In a proof-of-concept safety study, adult patients with COVID-19-induced respiratory failure and a <300mmHg PaO2/FiO2 (P/F) ratio, requiring invasive mechanical ventilation (IMV) or non-invasive respiratory support (NIRS) received nebulized rt-PA in two cohorts (C1 and C2), alongside standard of care during the first two UK COVID-19 waves. Matched historical controls (MHC; n=18) were used in C1. Safety co-primary endpoints were treatment-related bleeds and fibrinogen reduction to <1.0–1.5 g/L. A dose escalation strategy for improved efficacy with the least safety concerns was determined in C1 for use in C2; patients were stratified by ventilation type to receive 40–60 mg rt-PA per day for ≤14 days. Nine patients in C1 (IMV, 6/9; NIRS, 3/9) and 26 in C2 (IMV, 12/26; NIRS, 14/26) received nebulized rt-PA for a mean (SD) of 6.7 (4.6) and 9.1(4.6) days, respectively. Four bleeding events (one severe and three mild) in three patients were considered treatment-related. No significant fibrinogen reductions were reported. Greater improvement in mean P/F ratio from baseline to end of study was observed in C1 compared with MHC [C1; 154 to 299 vs MHC; 154 to 212). In C2, there was no difference in the baseline P/F ratio of NIRS and IMV patients. However, a larger improvement in P/F ratio was observed in NIRS patients [NIRS; 126 to 240 vs IMV; 120 to 188) and they required fewer treatment days (NIRS; 7.86 vs IMV; 10.5). Nebulized rt-PA appears to be well-tolerated, showing a trend of improved oxygenation and faster recovery in patients with acute COVID-19-induced respiratory failure requiring respiratory support; this effect was more pronounced in the NIRS group. Further investigation is required to study the potential of this novel treatment approach.


Asunto(s)
Hemorragia , Invasividad Neoplásica , COVID-19 , Insuficiencia Respiratoria
2.
medrxiv; 2022.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2022.08.09.22278600

RESUMEN

COVID-19 is unlikely to be the last pandemic that we face. According to an analysis of a global dataset of historical pandemics from 1600 to the present, the risk of a COVID-like pandemic has been estimated as 2.63% annually or a 38% lifetime probability. This rate may double over the coming decades. While we may be unable to prevent future pandemics, we can reduce their impact by investing in preparedness. In this study, we propose RapiD_AI: a framework to guide the use of pretrained neural network models as a pandemic preparedness tool to enable healthcare system resilience and effective use of ML during future pandemics. The RapiD_AI framework allows us to build high-performing ML models using data collected in the first weeks of the pandemic and provides an approach to adapt the models to the local populations and healthcare needs. The motivation is to enable healthcare systems to overcome data limitations that prevent the development of effective ML in the context of novel diseases. We digitally recreated the first 20 weeks of the COVID-19 pandemic and experimentally demonstrated the RapiD_AI framework using domain adaptation and inductive transfer. We (i) pretrain two neural network models (Deep Neural Network and TabNet) on a large Electronic Health Records dataset representative of a general in-patient population in Oxford, UK, (ii) fine-tune using data from the first weeks of the pandemic, and (iii) simulate local deployment by testing the performance of the models on a held-out test dataset of COVID-19 patients. Our approach has demonstrated an average relative/absolute gain of 4.92/4.21% AUC compared to an XGBoost benchmark model trained on COVID-19 data only. Moreover, we show our ability to identify the most useful historical pretraining samples through clustering and to expand the task of deployed models through inductive transfer to meet the emerging needs of a healthcare system without access to large historical pretraining datasets.


Asunto(s)
COVID-19
3.
researchsquare; 2022.
Preprint en Inglés | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1949711.v1

RESUMEN

COVID-19 is unlikely to be the last pandemic that we face. According to an analysis of a global dataset of historical pandemics from 1600 to the present, the risk of a COVID-like pandemic has been estimated as 2.63% annually or a 38% lifetime probability. This rate may double over the coming decades. While we may be unable to prevent future pandemics, we can reduce their impact by investing in preparedness. In this study, we propose RapiD AI : a framework to guide the use of pretrained neural network models as a pandemic preparedness tool to enable healthcare system resilience and effective use of ML during future pandemics. The RapiD AI framework allows us to build highperforming ML models using data collected in the first weeks of the pandemic and provides an approach to adapt the models to the local populations and healthcare needs. The motivation is to enable healthcare systems to overcome data limitations that prevent the development of effective ML in the context of novel diseases. We digitally recreated the first 20 weeks of the COVID-19 pandemic and experimentally demonstrated the RapiD AI framework using domain adaptation and inductive transfer. We (i) pretrain two neural network models (Deep Neural Network and TabNet) on a large Electronic Health Records dataset representative of a general in-patient population in Oxford, UK, (ii) fine-tune using data from the first weeks of the pandemic, and (iii) simulate local deployment by testing the performance of the models on a held-out test dataset of COVID-19 patients. Our approach has demonstrated an average relative/absolute gain of 4.92/4.21% AUC compared to an XGBoost benchmark model trained on COVID-19 data only. Moreover, we show our ability to identify the most useful historical pretraining samples through clustering and to expand the task of deployed models through inductive transfer to meet the emerging needs of a healthcare system without access to large historical pretraining datasets.


Asunto(s)
COVID-19
4.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.12.23.21268276

RESUMEN

ABSTRACT In an updated self-controlled case series analysis of 42,200,614 people aged 13 years or more, we evaluate the association between COVID-19 vaccination and myocarditis, stratified by age and sex, including 10,978,507 people receiving a third vaccine dose. Myocarditis risk was increased during 1-28 days following a third dose of BNT162b2 (IRR 2.02, 95%CI 1.40, 2.91). Associations were strongest in males younger than 40 years for all vaccine types with an additional 3 (95%CI 1, 5) and 12 (95% CI 1,17) events per million estimated in the 1-28 days following a first dose of BNT162b2 and mRNA-1273, respectively; 14 (95%CI 8, 17), 12 (95%CI 1, 7) and 101 (95%CI 95, 104) additional events following a second dose of ChAdOx1, BNT162b2 and mRNA-1273, respectively; and 13 (95%CI 7, 15) additional events following a third dose of BNT162b2, compared with 7 (95%CI 2, 11) additional events following COVID-19 infection. An association between COVID-19 infection and myocarditis was observed in all ages for both sexes but was substantially higher in those older than 40 years. These findings have important implications for public health and vaccination policy. Funding Health Data Research UK.


Asunto(s)
COVID-19 , Miocarditis
5.
- The COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium; David J Ahern; Zhichao Ai; Mark Ainsworth; Chris Allan; Alice Allcock; Azim Ansari; Carolina V Arancibia-Carcamo; Dominik Aschenbrenner; Moustafa Attar; J. Kenneth Baillie; Eleanor Barnes; Rachael Bashford-Rogers; Archana Bashyal; Sally Beer; Georgina Berridge; Amy Beveridge; Sagida Bibi; Tihana Bicanic; Luke Blackwell; Paul Bowness; Andrew Brent; Andrew Brown; John Broxholme; David Buck; Katie L Burnham; Helen Byrne; Susana Camara; Ivan Candido Ferreira; Philip Charles; Wentao Chen; Yi-Ling Chen; Amanda Chong; Elizabeth Clutterbuck; Mark Coles; Christopher P Conlon; Richard Cornall; Adam P Cribbs; Fabiola Curion; Emma E Davenport; Neil Davidson; Simon Davis; Calliope Dendrou; Julie Dequaire; Lea Dib; James Docker; Christina Dold; Tao Dong; Damien Downes; Alexander Drakesmith; Susanna J Dunachie; David A Duncan; Chris Eijsbouts; Robert Esnouf; Alexis Espinosa; Rachel Etherington; Benjamin Fairfax; Rory Fairhead; Hai Fang; Shayan Fassih; Sally Felle; Maria Fernandez Mendoza; Ricardo Ferreira; Roman Fischer; Thomas Foord; Aden Forrow; John Frater; Anastasia Fries; Veronica Gallardo Sanchez; Lucy Garner; Clementine Geeves; Dominique Georgiou; Leila Godfrey; Tanya Golubchik; Maria Gomez Vazquez; Angie Green; Hong Harper; Heather A Harrington; Raphael Heilig; Svenja Hester; Jennifer Hill; Charles Hinds; Clare Hird; Ling-Pei Ho; Renee Hoekzema; Benjamin Hollis; Jim Hughes; Paula Hutton; Matthew Jackson; Ashwin Jainarayanan; Anna James-Bott; Kathrin Jansen; Katie Jeffery; Elizabeth Jones; Luke Jostins; Georgina Kerr; David Kim; Paul Klenerman; Julian C Knight; Vinod Kumar; Piyush Kumar Sharma; Prathiba Kurupati; Andrew Kwok; Angela Lee; Aline Linder; Teresa Lockett; Lorne Lonie; Maria Lopopolo; Martyna Lukoseviciute; Jian Luo; Spyridoula Marinou; Brian Marsden; Jose Martinez; Philippa Matthews; Michalina Mazurczyk; Simon McGowan; Stuart McKechnie; Adam Mead; Alexander J Mentzer; Yuxin Mi; Claudia Monaco; Ruddy Montadon; Giorgio Napolitani; Isar Nassiri; Alex Novak; Darragh O'Brien; Daniel O'Connor; Denise O'Donnell; Graham Ogg; Lauren Overend; Inhye Park; Ian Pavord; Yanchun Peng; Frank Penkava; Mariana Pereira Pinho; Elena Perez; Andrew J Pollard; Fiona Powrie; Bethan Psaila; T. Phuong Quan; Emmanouela Repapi; Santiago Revale; Laura Silva-Reyes; Jean-Baptiste Richard; Charlotte Rich-Griffin; Thomas Ritter; Christine S Rollier; Matthew Rowland; Fabian Ruehle; Mariolina Salio; Stephen N Sansom; Alberto Santos Delgado; Tatjana Sauka-Spengler; Ron Schwessinger; Giuseppe Scozzafava; Gavin Screaton; Anna Seigal; Malcolm G Semple; Martin Sergeant; Christina Simoglou Karali; David Sims; Donal Skelly; Hubert Slawinski; Alberto Sobrinodiaz; Nikolaos Sousos; Lizzie Stafford; Lisa Stockdale; Marie Strickland; Otto Sumray; Bo Sun; Chelsea Taylor; Stephen Taylor; Adan Taylor; Supat Thongjuea; Hannah Thraves; John A Todd; Adriana Tomic; Orion Tong; Amy Trebes; Dominik Trzupek; Felicia A Tucci; Lance Turtle; Irina Udalova; Holm Uhlig; Erinke van Grinsven; Iolanda Vendrell; Marije Verheul; Alexandru Voda; Guanlin Wang; Lihui Wang; Dapeng Wang; Peter Watkinson; Robert Watson; Michael Weinberger; Justin Whalley; Lorna Witty; Katherine Wray; Luzheng Xue; Hing Yuen Yeung; Zixi Yin; Rebecca K Young; Jonathan Youngs; Ping Zhang; Yasemin-Xiomara Zurke.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.05.11.21256877

RESUMEN

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete understanding of potentially druggable immune mediators of disease. To advance this, we present a comprehensive multi-omic blood atlas in patients with varying COVID-19 severity and compare with influenza, sepsis and healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity revealed cells, their inflammatory mediators and networks as potential therapeutic targets, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Tensor and matrix decomposition of the overall dataset revealed feature groupings linked with disease severity and specificity. Our systems-based integrative approach and blood atlas will inform future drug development, clinical trial design and personalised medicine approaches for COVID-19.


Asunto(s)
COVID-19 , Sepsis
6.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.03.11.21253364

RESUMEN

ABSTRACT Background A new, more transmissible variant of SARS-CoV-2, variant of concern (VOC) 202012/01 or lineage B.1.1.7, has emerged in the UK. We estimate the risk of critical care admission, mortality in critical ill patients, and overall mortality associated with VOC B.1.1.7 compared with the original variant. We also compare clinical outcomes between these variants ‘ groups. Methods We linked a large primary care (QResearch), the national critical care (ICNARC CMP) and the COVID-19 testing (PHE) database and extracted two cohorts. The first was used to explore the association between VOC B.1.1.7 and critical care admission and 28-day mortality. The second to determine the risk of mortality in critically ill patients with VOC B.1.1.7 compared to those without. We used Royston-Parmar models adjusted for age, sex, region, other socio-demographics and comorbidities (asthma, COPD, type I and II, hypertension). We reported information on types and duration of organ supports for the two variants ‘ groups. Findings The first cohort included 198,420 patients. Of these, 80,494 had VOC B.1.1.7, 712 were critically ill and 630 died by 28 days. The second cohort included 3432 critically ill patients. Of these, 2019 had VOC B.1.1.7 and 822 died at the end of critical care. Using the first cohort, we estimated adjusted hazard ratios for critical care admission and mortality to be 1.99 (95% CI: 1.59, 2.49) and 1.59 (95% CI: 1.25-2.03) for VOC B.1.1.7 compared with the original variant group, respectively. The adjusted hazard ratio for mortality in critical care, estimated using the second cohort, was 0.93 (95% CI 0.76-1.15) for patients with VOC B.1.1.7, compared to those without. Interpretation VOC B.1.1.7 appears to be more severe. Patients with VOC B.1.1.7 are at increased risk of critical care admission and mortality compared with patients without. For patients receiving critical care, mortality appears independent of virus strain. RESEARCH IN CONTEXT Evidence before this study A new variant of the SARS-CoV-2 virus, variant of concern (VOC) 202012/01, or lineage B.1.1.7, was detected in England in September 2020. The characteristics and outcomes of patients infected with VOC B.1.1.7 are not yet known. VOC B.1.1.7 has been associated with increased transmissibility. Early analyses have suggested infection with VOC B.1.1.7 may be associated with a higher risk of mortality compared with infection with other virus variants, but these analyses had either limited ability to adjust for key confounding variables or did not consider critical care admission. The effects of VOC B.1.1.7 on severe COVID-19 outcomes remain unclear. Added value of this study This study found a 60% higher risk of 28-day mortality associated with infection with VOC B.1.1.7 in patients tested in the community in comparison with the original variant, when adjusted for key confounding variables. The risk of critical care admission for those with VOC B.1.1.7 is double the risk associated with the original variant. For patients receiving critical care, the infecting variant is not associated with the risk of mortality at the end of critical care. Implications of all the available evidence The higher mortality and rate of critical care admission associated with VOC B.1.1.7, combined with its known increased transmissibility, are likely to put health care systems under further stress. These effects may be mitigated by the ongoing vaccination programme.


Asunto(s)
COVID-19 , Hipertensión
7.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.06.05.20116624

RESUMEN

Introduction Epidemiological and laboratory research seems to suggest that smoking and perhaps nicotine alone could reduce the severity of COVID-19. Likewise, there is some evidence that inhaled corticosteroids could also reduce its severity, opening the possibility that nicotine and inhaled steroids could be used as treatments. Methods In this prospective cohort study, we will link English general practice records from the QResearch database to Public Health England's database of SARS-CoV-2 positive tests, Hospital Episode Statistics, admission to intensive care units, and death from COVID-19 to identify our outcomes: hospitalisation, ICU admission, and death due to COVID. Using Cox regression, we will perform sequential adjustment for potential confounders identified by separate directed acyclic graphs to: 1. Assess the association between smoking and COVID-19 disease severity, and how that changes on adjustment for smoking-related comorbidity. 2. More closely characterise the association between smoking and severe COVID-19 disease by assessing whether the association is modified by age (as a proxy of length of smoking), gender, ethnic group, and whether people have asthma or COPD. 3. Assess for evidence of a dose-response relation between smoking intensity and disease severity, which would help create a case for causality. 4. Examine the association between former smokers who are using NRT or are vaping and disease severity. 5. Examine whether pre-existing respiratory disease is associated with severe COVID-19 infection. 6. Assess whether the association between chronic obstructive pulmonary disease (COPD) and asthma and COVID-19 disease severity is modified by age, gender, ethnicity, and smoking status. 7. Assess whether the use of inhaled corticosteroids is associated with severity of COVID-19 disease. 8. To assess whether the association between use of inhaled corticosteroids and severity of COVID-19 disease is modified by the number of other airways medications used (as a proxy for severity of condition) and whether people have asthma or COPD. Conclusions This representative population sample will, to our knowledge, present the first comprehensive examination of the association between smoking, nicotine use without smoking, respiratory disease, and severity of COVID-19. We will undertake several sensitivity analyses to examine the potential for bias in these associations.


Asunto(s)
Embolia Pulmonar , Enfermedades Respiratorias , Enfermedad Pulmonar Obstructiva Crónica , Asma , Muerte , COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA